A Global Existence Theorem for Some Differential Equations in Hilbert Spaces.

نویسنده

  • S Zaidman
چکیده

5 Manning, A., Animal Behaviour, 9, 82-92 (1961). 6 Ibid., 11, 116-120 (1963). 7Ewing, A. W., Animal Behaviour, 9, 93-99 (1961). 8Ibid., 11, 369-378 (1963). 'Pearce, S., Animal Behaviour, 8, 232 (1960), and unpublished. "Brncic, D., and S. Koref-Santibanez, Genetics, 49, 585-591 (1964). 11 Caspari, E., in Behavior and Evolution, ed. A. Roe and G. G. Simpson (New Haven: Yale, 1958), pp. 103-127. '2Pittendrigh, C. S., in Behavior and Evolution (New Haven: Yale, 1958), pp. 390-416. 13 Lewontin, R. C., Am. Naturalist, 93, 321-328 (1959). 14Spieth, H. T., in Behavior and Evolution, ed. A. Roe and G. G. Simpson (New Haven: Yale, 1958), pp. 363-389. 15 Sexton, 0. J., and H. D. Stalker, Animal Behaviour, 9, 77-81 (1961). 16Brown, R. G. B., "A comparative study of mating behaviour in the Drosophila obscura group," Ph. D. thesis in Zoology, Oxford, England (1962). 17 Petit, C., Bull. Biologique de la France et de la Belgique, 92, 248-329 (1958). l'Petit, C., Ann. Genetique, 1, 83-87 (1959). 19 Spiess, E. B., and B. Langer, Evolution, 15, 535-544 (1961). 20Ibid., 18, in press. 21 Levine, R. P., Evolution, 6, 216-223 (1952). 22Moos, J. R., Evolution, 9, 141-151 (1955). 23 Heuts, M. J., Heredity, 2, 63-75 (1948). 24 Birch, L. C., Evolution, 9, 389-399 (1955). 25Dobzhansky, Th., Evolution, 17, 333-339 (1963).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Global Solutions of Semilinear Heat Equations in Hilbert Spaces

The existence, uniqueness, regularity and asymptotic behavior of global solutions of semilinear heat equations in Hilbert spaces are studied by developing new results in the theory of one-parameter strongly continuous semigroups of bounded linear operators. Applications to special semilinear heat equations in L(R) governed by pseudo-differential operators are given.

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Random differential inequalities and comparison principles for nonlinear hybrid random differential equations

 In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities  have been proved for an IVP of first order hybrid  random differential equations with the linear perturbation of second type. A comparison theorem is proved and  applied to prove the uniqueness of random solution for the considered perturbed random differential eq...

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 51 6  شماره 

صفحات  -

تاریخ انتشار 1964